更新时间:2020-03-17
安沃驰精密调压阀3610607500;安沃驰AVENTICS精密调压阀-3610607500阀门结构形式 提动阀 手轮 外壳 压铸锌 密封件材料 丙烯树胶 额定流量Qn 900 l/min 滞环 < 0.15 bar 压缩空气 接口 人口 G 1/4 压缩空气 接口 出口 G 1/4 结构特点 提动阀 低 / 高环境温度 -25 ... 70 °C
安沃驰精密调压阀3610607500,德国AVENTICS精密调压阀,武汉百士自动化设备有限公司供应;
安沃驰AVENTICS精密调压阀-3610607500
阀门结构形式 提动阀
手轮
外壳 压铸锌
密封件材料 丙烯树胶
额定流量Qn 900 l/min
滞环 < 0.15 bar
压缩空气 接口 人口 G 1/4
压缩空气 接口 出口 G 1/4
结构特点 提动阀
低 / 高环境温度 -25 ... 70 °C
介质温度范围 -25 ... 70 °C
介质 压缩空气
额定流量Qn 900 l/min
滞环 < 0.15 bar
重量 0,6 kg
气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。
一、气动阀门系统各部分功能和用途:
1、气动执行器:分为双动型和单动型。双动气动执行器:对阀门开启和关闭的两位式控制。单动气动执行器(弹簧复位型):在气路切断或故障,阀门自动开启或关闭。
2、阀门:阀门是流体输送系统中的控制部件。
3、电磁阀:分为单电控电磁阀和双电控电磁阀。单电控电磁阀:供电时阀门打开或关闭,断电时阀门关闭或打开?。双电控电磁阀:一个线圈得电时阀门打开,另一个线圈得电时阀门关闭。
4、限位开关:远距离传送阀门的开关位置的信号。有机械式、接近式、感应式。
5、气电定位器:根据电流信号?(标准4-20mA)的大小对阀门的介质流量调节控制。
6、气源处理三联件:包括空气减压阀、过滤器、油雾器,对气源稳压、清洁、运动部件润滑作用。
7、手动操作机构:在自动控制不正常情况下手动操作。
8、静音器:安装在电磁阀的排气口,降低噪声。
9、快插接头:一端连接于电磁阀或执行器,另一端将气管直接插入即可使用。
10、空压机:是压缩空气的气压发生装置。
11、气管:有软管、紫铜管、不锈钢。常用规格有6mm、8mm。
气动开关型阀门系统构成:气动执行器、阀门、电磁阀、限位开关、气源处理三联件、手动操作机构、消声器、快插接头、空气压缩机、气管。
气动调节型阀门系统构成:气动执行器、阀门、气电定位器、气源处理三联件、手动操作机构、消声器、快插接头、空气压缩机、气管。
气动开关阀就是以压缩空气(空压机)为动力源,通过电磁阀换向去驱动气动执行器,气动执行器带动阀门,实现阀门的开关,
安沃驰精密调压阀3610607500
精密调压阀
安沃驰AVENTICS精密调压阀
3610507100
3610507200
3610507300
3610507500
3610507600
3610507700
安沃驰AVENTICS精密调压阀
3610547500
安沃驰AVENTICS精密调压阀
3610607000
3610607100
3610607200
3610607300
3610607400
3610607500
3610607600
3610607700
安沃驰AVENTICS精密调压阀
3610628300
3610628400
3610628500
3610628600
3610628700
3610628330
3610628630
安沃驰AVENTICS精密调压阀
3610647100
3610647400
3610647500
3610647600
自力式压力调节阀因为不需要其它外来能源如电源、气源,仅靠介质自身的能量来驱动,既节能又环保,使用方便,安装完毕后设定好压力值即可投入自动运行,所以在对控制精度要求不高,又缺乏电源、气源的场合,得到了越来越广泛的使用。但在使用过程中,一定要注意选型的特殊性,否则容易引起事故。在使用过程中,要注意使用的选型和安装环境,因此,详细了解自力式压力调节阀的工作原理和结构是非常重要的。
所谓小流量调节阀,顾名思义,就是流通能力很小的调节阀。
阀门的流通能力是在统一条件下的阀门容量指标。我国用C 值表示 。其定义为:阀门全开时,当阀前后压差为1公斤/厘米 2 ,介质重度为1克/ 厘米 3 时 ,每小时流过阀门的介质量(米 3 /时)。对于不可压缩流体,在充分湍流的状态下阀门的流通能力仅仅取决于阀本身的结构。在计算所需的阀门流通能力时,应注意介质不同或流动条件不同时, 阀内流动 状态会有很大的差异。
在小流量情况下,尤其是粘性流体和低压下工作时,流体的主约束往往是层流或层流和湍流的混合态。层流时,经过阀门的介质流量和阀前后压差呈线性关系。而在层流和湍流混合态下,随着雷诺数的增加,即使压差不变,流经阀门的介质量也会增加。在*湍流时,流量才不随雷诺数变化而变化。尽管如此,选择小流量调节阀,仍然用传统的方法和计算公式进行。但是其计算值和实际值偏离很大,据资料介绍在 Cv=0.01以下时,它只是作为一个容量指标,具有参考意义而已。实际流通能力应根据经验确定。
随着流通能力减小,阀门的可调比将下降。但少也能保证10:l到15:1之间,如果可调比再小,就难以进行流量的调节。
阀门在串联使用时,随着开度变化,,阀前后压差也有变化,因此使阀门的工作特性曲线偏离理想特性。如果管路阻力大,直线性会变成快开特性,而丧失调节能力。等百分比特性将变成直线特性。小流量情况下,由于很少有管路阻力,上述特性畸变就不大了,对等百分比特性,实际上也就没有必要。从制造的角度来说, Cv =0.05以下时,也不可能再产生等百分比的侧面形状。因此,对小流量阀主要的问题是如何将流量控制在所需要的范围之内。
从经济效果出发,使用者希望一个阀门可同时用于截流和调节,也是可以做到的。但对于调节阀来说,主要是实现对流量的控制,关闭是次要的。认为小流量阀本身流量很小,在关闭时很容易实现截流,是错误的。国外对小流量调节阀泄漏量一般也做了规定。当Cv 值为10 时 ,该阀门的泄漏量规定为:在3.5 公斤/厘米。气压下,泄漏量为大流量的1 % 以下。
随着工业自动化进程,气动阀门的智能化已经慢慢普及到各个行业管道控制中,智能化主要是体现在气动阀门搭载智能阀门定位器通过电脑程序控制阀门开关和精准流量调节。
智能化表现在下列方面:
气动阀门有自身故障诊断功能,诊断阀门流量调节是否精准,信号是否反馈到位;诊断运行状态的远程通信和阀位调节等智能功能,使得气动阀门的管理更加方便,故障诊断变得容易,也降低了对维护人员的技能要求。
使用气动阀门可以减少生产线的产品类型,全用气动阀智能化控制。气动阀门搭载智能阀门定位器不仅可以方便地改变气动阀的流量特性也可以提高控制系统的控制品质。因此,对气动阀门流量特性的要求可简化及标准化(例如,仅生产线特性气动控制阀)。用智能化功能模块实现与被控对象特性的匹配,使气动阀产品的类型和品种大大减少,使气动阀的制造过程得到简化。为减少气动阀的品种,国内亦有厂家生产全功能气动阀,这些智能化的方法将不断提高,并在生产和市场中经受考验和认可。
气动阀门的数字通信。数字通信将在气动阀中获得广泛应用,以HART通信协议为基础,一些气动阀的阀门定位器将输入信号和阀位信号在同一传输线实现;以现场总线技术为基础,气动阀与阀门定位器、PID控制功能模块结合,使控制功能在现场级实现,使危险分散,使控制更及时、更迅速。
智能阀门定位器也叫智能阀门控制器。智能阀门定位器具有阀门定位器的所有功能,同时能够改善气动阀的动态和静态特性,提高气动阀的控制精度,因此,智能阀门定位器将在今后一段时间内成为重要的气动阀辅助设备被广泛应用。
在气压传动系统中,气动控制元件是用来控制和调节压缩空气的压力、流量、流动方向和发送信号的重要元件,利用它们可以组成各种气动控制回路,以保证气动执行元件或机构按设计的程序正常工作
控制元件按功能和用途可分为方向控制阀、流量控制阀和压力控制阀三大类。此外,还有通过改变气流方向和通断实现各种逻辑功能的气动逻辑元件。
近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。