更新时间:2019-10-14
力士乐比例减压阀3DREP6C-21=25EG24N9K4/M=0,REXROTH比例溢流阀,力士乐比例压力控制阀;被控制量与输入信号成比例连续变化的阀类,包括普通比例阀和带内反馈的电液比例阀。
力士乐比例减压阀3DREP6C-21=25EG24N9K4/M=0,武汉百士自动化设备有限公司专注于液压、气动、工控自动化备件销售,热诚欢迎新老客户咨询购买!
比例控制阀
采用比例电磁铁(或力矩马达)将输入信号转换成力或阀的机械位移,使阀的输出(压力、流量)也按照其输入量连续、成比例地进行控制的阀。
大型钢厂现场使用的比例阀主要有下表中的几种:伺服比例控制阀、比例控制阀、电液比例控制阀,比例阀,伺服阀。
1、4WRD E..型比例伺服控制阀(高频响阀)
结构和功能
4WRDE型阀是三级高频响方向阀。该阀可用于开环控制或闭环调节液流的大小和方向,但主要用于闭环调节回路中。
阀主要由下列部分组成:
1.二级先导控制阀由力矩马达( 1 )和由喷嘴挡板阀构成的液压放大器( 5),和用作流量放大级的阀芯衬套组件(6 )(用以控制第三级(7 ))组成。
2.第三级(7)用于流量控制。
3.感应式位移传感器( 8),连接第三级主阀芯( 10)的磁芯(9 )
通过内置电子放大器实现阀闭环控制信号逻辑连接,位置检测系统反馈,和先导阀的控制。
给定值/实际值比较得到的差动电压经过电子控制器放大, 并作为控制偏差量传递到阀的一级。这个信号推动两个控制喷嘴( 3.1, 3.2) 之间的挡板( 2)因而在两个控制腔(11.1.11.2)产生了压差。控制阀芯(4 )因此被推动,并通过相应的液流流到弹簧腔(12.1or12.2)阀芯(10)和带磁芯(9)的位移传感器(8)-直运动,直到实际值和给定值信号再一次相等。在控制条件下;主阀芯( 10 )一直被保持在给定值所对应的位置。
阀芯行程和给定值成正比。通过阀芯( 10 )相对于控制边( 13 )的位置,形成相应的与流量成正比的阀口开度。
阀的动态特性通过电子放大器优化。电子放大器内置于阀上(振荡器,解调器)
零点调节由厂家预先设定,通过闭环控制电子放大器内的电位器, 零点能在名义行程士10%范围内调整。移去阀盖尾部的插头,可以对内置闭环电子放大器进行操作。
液压原理图和基本回路分析
液压原理图及阀件分布简介
一、伺服控制回路
2.辊缝控制模式
1.闭环控制模式
轧机轧辊的调整由一个闭环辊缝控制系统完成。通常的轧制操作在闭环辊缝控制模式下。TCS和其控制器接收辊缝设定值数据并在此模式下控制轧制。
在闭环模式下TCS的功能总是一个位置控制功能。这也包括在可允许大轧制力已经达到时的状态,在这种情况下,通过内部控制器,辊缝设定到不超过大允许轧制力。在辊缝设定时,轧制力控制的TCS功能取代位置控制。
每个调整液压缸带有一个带有设定值、位置数值和设定点数值的控制器。
液压阀位置:
(1)泄荷阀关闭;
(2) 单向阀打开;
(3) 伺服阀从TCS控制器中接到一个适当的设定值。
2.锁定控制模式
在辊缝位置处于维持状态, 新设定点或偏离不会引|起辊缝变化, 控制模式处于锁定状态。
为避免辊缝的偏差,锁定模 式功能必须对控制辊缝的两液压缸同时控制。
液压阀位置:
(1)泄荷阀关闭;
(2)单向阀关闭;
(3)伺服阀从TCS控制器中接到一个设定值0。
3.快速打开和卸压模式
该功能主要用于轧机保护。特别是如果轧件在轧机中遇到冲击,必须立即中断轧机操作。这意味着在轧机调整过程中立即减小轧制压力,并且打开辊缝到大辊缝尺寸。相对应的是,当该功能结束时,所有水平辊和立辊的液压缸柱塞杆全部缩回。
卸压并且下一步所有的液压缸同时打开。轧辊以-一个控制方式打开,避免单个轧辊位置过分的倾斜。倾斜检测系统发挥作用。
液压阀的位置:
(1)卸荷阀关闭;
(2)单向阀打开;
(3)伺服阀从控制器中接收到大打开设定值。
当某个轧辊的液压缸柱塞杆已全部缩回,伺服阀设定值被清零时,单向阀关闭,并且快速的卸荷信号传输到一级PLC中。然后,卸压阀打开2秒时间。
4.非卸压模式
该控制模式可靠地卸载压力系统。因安全原因,该功能在快速打开状态的末端发生。而且,该功能在从等待工作状态到准备操作I作状态转换之前执行。这避免了当单向阀打开时在轧辊液压系统由压力弓|起的失控动作。
为了 避免轧辊的过度倾斜,两个液压缸的该功能必须同时发生。
液压阀的位置:
(1)单向阀关闭
(2)伺服阀从TCS控制器中接收到一个零值
(3)卸荷阀关闭。
5.浮动模式 .
浮动模式是一个控制器模式,在此模式下通过外力的动作轧辊能够自由的移动。浮动模式定义为下辊的轴向移动。在浮动模式下,下辊根据与上辊的相互关系,以一一个标定状态顺序被轴向定位。该移动通过立辊。
液压阀的位置:
(1)卸荷阀打开;
(2)单向阀关闭;
(3)伺服阀从TCS控制器中接收到零设定值。
6.轴向调整系统脱离模式
液压系统和轴向移动位移编码器的连接在此操作模式下被引入一个条件,在此模式下液压插头和位移编码器插头能被松开或插上。位移编码器的插头必须插入在机架_上的插口。接着插头在一个停车位置。该停车位置由TCS电气检测。
液压阀的位置:
(1)单向阀关闭;
(2)伺服阀从TCS控制器中接收到一个零值
(3)卸荷阀关闭。;
当条件1达到时,轴向移动编码器的能量供应断开。
当条件1+ 2获得时, 1级控制给出“断开位 置编码器轴向移动信号已准备好”
检测插头是否在停车位置。如果在,轴向移动系统已准备好换辊。
7.轴向调整系统连接模式
在此模式下;液压系统和轴向位移编码器的连接被采用了一个前提,即液压插头和位移编码器插头能被反向插到辊系内。
液压阀的位置:
(1)单向阀关闭
(2)伺服阀从TCS控制器中接收到一个零值
(3)卸荷阀关闭。
当条件1已产生时,一级控制系统接到“位置编码器轴向移动信号连接准备好”。检
测信号插头是否已与位置编码器E连接。
当条件3已产生时,轴向移动位移编码器有效轴向移动系统准备好冲洗。
8.轴向调整系统冲洗模式
冲洗模式是一个控制器模式用于换完辊后从轴向移动系统清除空气和污染物。在能够设定辊缝前的一个短时间内,轴向系统需要冲洗。
当液压管路和位移编码器连接后,可以由操作者立即开始冲洗。手动操作的截止阀必须打开使其能够冲洗。当冲洗结束后手动截止阀必须关闭。
液压阀的位置:
(1)卸荷阀关闭
(2)截止阀打开
(3)伺服阀从TCS控制器中接收到一个+ 20%的设定值。( 注:明确的设定值,因为液压缸预期向DS侧移动)
冲洗时间是120秒。操作侧压力应该接近180bar。如果适当,可用一一个较低的设定值。如果操作侧压力升到大约250bar时,必须中断冲洗,并且-一个故障报警传到1级。一个可能的原因是截止阀( 421 )没有被打开。
当冲洗期已过,该阀转到下一个位置:
(1)卸荷阀关闭
(2)手动关闭截止阀
(3)伺服阀从TCS控制器中接收到一个0阀设定值。
(4)当冲洗结束时,该结果的一个信号被送到1级控制系统
力士乐比例减压阀3DREP6C-21=25EG24N9K4/M=0
R900956101 3DREP6C-2X=25EG24N9K4/M=00
R900959420 3DREP6C-2X=25EG24N9K4/M=LB
R901227879 3DREP6C-2X=25EG24N9K4/V-674=00
R900930267 3DREP6C-2X=25EG24N9K4/V=00
R900972053 3DREP6C-2X=25EG24NJK31/M=00
R900962549 3DREP6C-2X=25EG24NJK31/V=00
R901008747 3DREP6C-2X=25EG24NK4/M-20=00
R901008953 3DREP6C-2X=25EG24NK4/M-20=PL
R961005286 3DREP6C-2X=25EG24NK4/M-20=PL*ET
R901403208 3DREP6C-2X=25EG24NK4/M=00
R901243790 3DREP6C-2X=45EG24JK31/M=00
R900954496 3DREP6C-2X=45EG24K4/M=00
R900958036 3DREP6C-2X=45EG24N9K4/M=00
R900947445 3DREP6C-2X=45EG24N9K4/V=00
R901108114 3DREP6C-2X=45EG24NJK31/M=00
比例阀按功能分为三大类
(1)比例压力阀。有溢流阀减压阀,分别有直动和先导两种结构;可连续地或按比例地远程控制其输出油液压力;
(2)比例换向阀。有直动和先导两种结构,直动阀有带位移传感器和不带位移传感器两类。由于使用了比例电磁铁阀芯不仅可以换位,而且换位的行程可以连续地或按比例地变化。因而连通油口间的通流面积也可以连续或按比例地变化。所以比例换向阀不仅能够控制执行元件的方向而且能够控制其速度。因为这个原因比例阀中的比例换向阀应用也较为普遍;
(3)比例流量阀。有比例调速阀和比例溢流流量控制阀,可连续地或按比例地远程控制其输出流量。
比例阀的输入单元是电-机械转换器,它将输入的电信号转换成机械量转换器有伺服电机和步进电机力马达和力矩马达比例电磁铁等形式。但常用的比例阀大都采用了比例电磁铁,比例电磁铁根据电磁原理设计,能使其产生的机械量(力或力矩和位移)与输入电信号(电流)的大小成比例,再连续地控制液压阀阀芯的位置,进而实现连续地控制液压系统的压力方向和流量。比例电磁铁的结构,它由线圈、衔铁推杆等组成,当有信号输入线圈时,线圈内磁场对衔铁产生作用力,衔铁在磁场中按信号电流的大小和方向成比例连续地运动,再通过固连在一起的销钉带动推杆运动,从而控制滑阀阀芯的运动。应用较广泛的比例电磁铁是耐高压直流比例电磁铁。
比例电磁铁的类型按照工作原理主要分为
如下几类:
(1)力控制型
这类电磁铁的行程短,只有1 5mm,输出力与输入电流成正比,常用在比例阀的先导控制级
上:
(2)行程控制型
由力控制型加负载弹簧共同组成,电磁铁输出的力通过弹簧转换成输出位移,输出位移与输入电流成正比,工作行程达3mm,线性好,可以用在直控式比例阀上;
(3)位置调节型
衔铁的位置由传感器检测后,发出一个阀内反馈信号,在阀内进行比较后重新调节衔铁的位置。阀内形成闭环控制,精度高,衔铁的位置与力
无关,精度高的比例阀如德国的博世意大利的阿托斯等都采用这种结构。
比例阀与放大器配套使用放大器采用电流负反馈,设置斜坡信号发生器阶跃函数发生器、PD调节器反向器等,控制升压降压时间或运动加速度及减速度。断电时, 能使阀芯处于安全位置。
比例电磁铁和液压阀组成电液比例阀。由于比例电磁铁可以在不同的电流下得到不同的力(或行程),因此可以无级改变压力、流量。故比例电磁铁是比例阀的关键元件。
力士乐REXROTH比例阀,比例减压阀,比例压力控制阀,比例溢流阀:
R900978553 3DREP6C-2X=16EG24K4/V=00
R901279747 3DREP6C-2X=16EG24N9K4/M-674=00
R900961946 3DREP6C-2X=16EG24N9K4/M=00
R900944232 3DREP6C-2X=16EG24N9K4/V=00
R901366936 3DREP6C-2X=16EG24NJK31/M=00
R900737480 3DREP6C-2X=25EG24JD/M=00
R900975380 3DREP6C-2X=25EG24JK31/M=00
R901015796 3DREP6C-2X=25EG24JK31/V=00
R901195626 3DREP6C-2X=25EG24K4/M-674=00
R900954495 3DREP6C-2X=25EG24K4/M=00
R901276145 3DREP6C-2X=25EG24K4/V-674=00
R900935218 3DREP6C-2X=25EG24K4/V=00
R900754961 3DREP6C-2X=25EG24N5K4/M=00
R901113732 3DREP6C-2X=25EG24N6JK10/V-899=00
R901047698 3DREP6C-2X=25EG24N6JK31/M=00
R900753107 3DREP6C-2X=25EG24N6K4/M=00
R901432623 3DREP6C-2X=25EG24N6K4/V=00
R901136485 3DREP6C-2X=25EG24N9JK10/M-899=00
R901205990 3DREP6C-2X=25EG24N9K4/M-674=00
R901319901 3DREP6C-2X=25EG24N9K4/M-977=00
液压系统的组成及其作用
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。
动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、诚压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等,方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。
液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压系统结构
液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。
液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。
在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。
基本液压回路中的动作顺序一控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对 于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。
根据系统工作原理,您可对所有回路依次进行编号。如果一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。
DIN ISO1219-2 标准定义了元件的编号组成,其包括下面四个部分,设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。
实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编号应该与元件列表中编号相*。这种方法特别适用于复杂液压控制系统,每个控制回路都与其系统编号相对应。